넥서스에서 제공하는 기본 repository recipe중에 apk는 없다.

 

ps.

나는 apt랑 헷갈려서 apt로 만들었다가 다음과 같은 에러를 만났다.

package mentioned in index not found (try 'apk update')

 

어쨋든 apk용 레포를 만들기 위해 넥서스에 apk recipe를 추가해보자.

 

1. git clone https://github.com/sonatype-nexus-community/nexus-repository-apk.git

2. cd nexus-repo tab

3. mvn clean package -PbuildKar

3-1. mvn 없으면 maven 설치

3-2. 빌드가 완료되면 target 폴더에 .kar 파일이 생성됩니다

4. 생성된 .kar 파일을 Nexus Repository의 deploy 폴더로 복사

5. 넥서스 재시작

1

 

'job > linux' 카테고리의 다른 글

기본 엔지니어링 체크리스트  (0) 2024.03.20
docker Exited (137)  (0) 2024.01.09
ci/cd 파이프라인  (0) 2022.11.16
간헐적 500 Server Internal Error 원인 파악하기  (0) 2022.11.10
du -sch --exclude  (0) 2022.07.11

집합 자료형은 중복되지 않는 고유한 요소들의 모음을 저장하는 자료형으로, 여러 가지 실무 상황에서 유용하게 사용할 수 있다. 집합은 중괄호 {}를 사용하여 생성하며, 다양한 집합 연산을 지원한다. 아래에서는 집합 자료형을 실무에서 사용할 수 있는 몇 가지 상황을 설명해보겠다.

1. 중복 제거

가장 일반적인 집합의 사용 사례는 중복된 데이터를 제거하는 것이다. 예를 들어, 고객 이메일 목록에서 중복된 이메일 주소를 제거할 때 유용하다.

예시

emails = ["alice@example.com", "bob@example.com", "alice@example.com", "charlie@example.com"]
unique_emails = set(emails)
print(unique_emails)  # 출력: {'alice@example.com', 'bob@example.com', 'charlie@example.com'}

2. 교집합, 합집합, 차집합 연산

집합은 교집합, 합집합, 차집합 등의 집합 연산을 효율적으로 수행할 수 있다. 이는 데이터 분석, 필터링 등에 매우 유용하다.

예시

# 두 집합 생성
set_a = {"apple", "banana", "cherry"}
set_b = {"banana", "cherry", "date", "fig"}

# 교집합
intersection = set_a & set_b
print(intersection)  # 출력: {'banana', 'cherry'}

# 합집합
union = set_a | set_b
print(union)  # 출력: {'apple', 'banana', 'cherry', 'date', 'fig'}

# 차집합
difference = set_a - set_b
print(difference)  # 출력: {'apple'}

3. 데이터 무결성 유지

집합은 중복을 허용하지 않기 때문에, 데이터 무결성을 유지하는 데 유용하다. 예를 들어, 사용자 ID나 제품 코드와 같이 고유해야 하는 데이터를 저장할 때 사용한다.

예시

user_ids = {"user1", "user2", "user3"}

# 새로운 사용자 ID 추가
user_ids.add("user4")
print(user_ids)  # 출력: {'user1', 'user2', 'user3', 'user4'}

# 중복된 사용자 ID 추가 시도
user_ids.add("user2")
print(user_ids)  # 출력: {'user1', 'user2', 'user3', 'user4'} (중복 추가되지 않음)

4. 빠른 멤버십 테스트

집합은 특정 요소가 집합에 존재하는지 빠르게 확인할 수 있다. 이는 대규모 데이터에서 특정 요소를 검색할 때 유용하다.

예시

# 대규모 데이터 집합 생성
large_set = set(range(1000000))

# 특정 요소 존재 여부 확인
print(999999 in large_set)  # 출력: True
print(1000000 in large_set)  # 출력: False

5. 태그 시스템

집합은 태그 시스템을 구현할 때 유용하다. 예를 들어, 블로그 게시물에 여러 태그를 추가하고, 특정 태그를 가진 게시물을 검색할 때 사용한다.

예시

# 게시물에 태그 추가
post_tags = {"python", "programming", "tutorial"}

# 새로운 태그 추가
post_tags.add("coding")
print(post_tags)  # 출력: {'python', 'programming', 'tutorial', 'coding'}

# 특정 태그 존재 여부 확인
print("python" in post_tags)  # 출력: True
print("java" in post_tags)    # 출력: False

결론

집합 자료형은 중복 제거, 집합 연산, 데이터 무결성 유지, 빠른 멤버십 테스트, 태그 시스템 등 다양한 실무 상황에서 유용하게 사용할 수 있다. 집합의 특성과 장점을 이해하고 적절히 활용하면 데이터 처리와 분석을 더욱 효율적으로 수행할 수 있다.

프로그래밍을 할 때 리스트와 튜플을 사용하여 데이터를 저장할 수 있다. 이 두 자료형은 많은 면에서 비슷하지만, 메모리 사용량에서는 차이가 있다. 이 글에서는 리스트와 튜플의 메모리 사용량 차이를 설명해보겠다.

리스트와 튜플의 메모리 사용량 비교

리스트와 튜플은 각각 데이터를 저장하는 방식이 다르기 때문에 메모리 사용량에서도 차이가 난다. 일반적으로 튜플이 리스트보다 메모리를 덜 사용한다.

예시

# 리스트와 튜플 생성
a_list = [1, 2, 3]
a_tuple = (1, 2, 3)

# 메모리 사용량 확인
print(a_list.__sizeof__())  # 출력: 64
print(a_tuple.__sizeof__())  # 출력: 48

위 예시에서 볼 수 있듯이, 동일한 데이터를 저장할 때 리스트는 64바이트를 사용하고, 튜플은 48바이트를 사용한다.

메모리 사용량 차이의 이유

  1. 가변성:
    • 리스트는 가변적이어서 요소를 추가하거나 삭제할 수 있다. 이를 위해 리스트는 추가적인 메모리를 할당하여 데이터를 저장하고 관리해야 한다. 반면, 튜플은 불변적이어서 한 번 생성되면 변경할 수 없다. 따라서 튜플은 고정된 메모리만 할당하면 된다.
  2. 오버 할당:
    • 리스트는 요소를 추가할 때마다 메모리를 재할당하는 비용을 줄이기 위해 오버 할당(over-allocation) 기법을 사용한다. 이는 리스트가 더 많은 메모리를 사용할 수 있게 한다. 반면, 튜플은 이러한 오버 할당이 필요 없으므로 더 적은 메모리를 사용한다[1][2].
  3. 구조적 차이:
    • 리스트는 각 요소에 대한 포인터를 저장하는 데 추가 메모리를 사용한다. 반면, 튜플은 이러한 포인터를 저장하지 않아 더 적은 메모리를 사용한다[1].

[1] https://stackoverflow.com/questions/46664007/why-do-tuples-take-less-space-in-memory-than-lists

[2] https://www.reddit.com/r/learnpython/comments/1b9rdxq/list_vs_tuple_mutable_vs_immutable_performance/

Citations: [1] https://stackoverflow.com/questions/46664007/why-do-tuples-take-less-space-in-memory-than-lists [2] https://www.reddit.com/r/learnpython/comments/1b9rdxq/list_vs_tuple_mutable_vs_immutable_performance/ [3] https://stackoverflow.com/questions/20771470/list-memory-usage [4] https://www.geeksforgeeks.org/memory-management-in-lists-and-tuples-using-python/ [5] https://www.geeksforgeeks.org/python-memory-consumption-dictionary-vs-list-of-tuples/ [6] https://www.upgrad.com/blog/list-vs-tuple/ [7] https://github.com/BecomeWeasel/daily_algo_challenge/issues/2

+ Recent posts